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Lattice Boltzmann model for photonic band gap materials
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An efficient technique for computing photonic band structure and defect modes is proposed based on the
lattice Boltzmann model. Physically, it is a scheme based on the kinetics of the virtual microscopic process,
rather than a solution of the macroscopic Maxwell equations. The method has significant advantages of being
naturally suited for massively parallel machine, as well as speed and convenience, providing another method-
ology for photonic band gap materials and, also, for general electromagnetic scattering problems in open region
when incorporated with the perfectly matched layer technique.
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In the past decade, there has been much interest in artifivhere the collision ternf);(x,t) takes the single relaxation
cially manufactured periodic dielectric media called photonictime form, with the relaxation timé,
band gapPBG) materials, since their unique optical proper- .
'Ellesse]znable one to manipulate and control the flow of photons Qi (x,0)= — E[fi(x1t)_ fi(o)(x,t)], 3)
Many methods have been proposed to study the photonic
band structure and/or defect modes for PBG materialsand f(o) are local equilibrium distribution functions. The
Among others, the plane wave expansion mettRWEM) evolutlon ruleg1) and(2) are particularly easy to implement
[6,7], multiple scattering theor§MST) [8], tight-binding for-  on a massively parallel computer: the relaxatidn can be
mulation[9], transfer matrix methofl10], and finite differ- computed simultaneously for each lattice site and then the
ence time domaifFDTD) scheme[11,17 are well estab- streaming(2) is achieved with regular, local interprocessor
lished. Most techniques are, physically, based on the solutiooommunications.
of macroscopic Maxwell equations and, computationally, re- Three macroscopic quantities are defined by
quire time growing at a ratll”, with »=2 andN being the . .
number of expansion terms or discretization points in a cell.
Here we set up a lattice BoltzmaithB) model[13-15 for - Z i =2
PBG materials, which is based on microscopic kinetics. The
method has significant advantages of being naturally suiteglherev =A/r, the Greek subscript denotes the space di-
for massively parallel machines as well as requiring compurections in Cartesian coordinates, andare weights for dif-
tation time scaling linearly withN like FDTD. When incor-  ferent f The physica| symmetry suggests that for

porated with perfectly matched layéPML) techniquel16],  —12,3.4. m;=m, which is set to unity for simplicity. The
it may also provide an alternative numerical tool for generalequ”,br,um d|str|but|0nsf(0) are chosen as
electromagnetic scattering.

< mifiveia, (4)

The model is defined on a two-dimensioriaD) square ) B )
lattice of spacing\. At timet, each lattice site is associated fi’=Ap+—u.e, fori=1234, )
with five quantitiesf;(x,t), i=0,1,2,3,4, which describe the
distributions of virtual photons at site timet, and moving fg°)=Aop, (6)

with velocity Ag /7. Here 7 is the discrete time step on the
lattice, g ={cog2m(i—1)/4],sif27(i—1)/4]} for i=1,2,3,4, where the coefficient&\,A,,B are independent of,u and
are four velocity directions along the links of the lattice, andcan be determined by some macroscopic constraints. The

€=0. first two are local conservation @f andu,
The distribution functions evolve based on the LB

Bhatnagar-Gross-Krook equati®h3,17], which is rewritten 4 o 4 o
into two procedures: relaxation, Z fi= 2 five,=u,. (7)
fr (D) =fi(x,1) +Qi(x,1), (1) The macroscopic equations modeled by this virtual pro-
cess can be worked out by performing a Chapman-Enskog
and streaming expansion on the evolution equatioflg—(3) [13—15. To

second order, they are

fi(x+Ae t+7)=f(x1), 2 dip+d,u,=0, (8)

1063-651X/2003/6@)/0257014)/$20.00 67 025701-1 ©2003 The American Physical Society



RAPID COMMUNICATIONS

LIN, FANG, XU, ZI, AND ZHANG PHYSICAL REVIEW E 67, 025701R) (2003

du,+2Av29,p=0. 9) When x+ Aeg; lies inside metal whilex and all its other
nearest neighbors are inside dielectric, we set
In deriving Eqs(8) and(9), we have fixed= 1/2. Equations

(8) and(9) are in fact the 2D Maxwell equations for the TM

and TE cases if one sets fa(x,t)= _#23 m;fi(x,t) (15

p=8Ez, U=—Hy, uy=H,, 10 1o forceE,, the tangential component of tikefield, equal to
zero for the TM case. If botlk+Ae; andx+ Ae, lie inside

and metal, we simply take

p=unH,, u=E,, u=-E,, (11

Mofo(X,t) + (X, t)+ fo(X,1)

f3(xlt):f4(xlt):_ 2

respectively, and then requires

(16)
1
ZAUZZE- (120 For the TE case, in place of EL5), we apply

Heree andu are, respectively, permittivity and permeability fa(x,t)="f1(x,t) 7

of the material. Equation&) and(12) serve to determine the ]
coefficients in Eqs(5) and (6) [14] to ensureE,=0 at the surface of metal. While botk

+Ae, andx+Ae, are in metal,
1 1
= due, B= 5 fa(x,t)=f,(x,t) and fu(x,t)="F1(x,1t) (18
Jae—1 (13 yield a vanishinge ; at metal surface for the TE mode. Simi-
Ag= o= =2 e —1 lar rules apply to other interface cases.
2ure, s The simulations begin by assigning a function called

_ o PEAKS in MATLAB function library toE, (H,) to trigger
wheree, =e&/eg and u, = ul puo are relative permittivity and - eyery possible eigenmode for TNTE) polarization. The
permeability of the material, respectively. _temporal variation of fields can then be recorded based on

Based on the LB model, we have calculated the photonigye eyolution ruleg1)—(3) and(14)—(18). The spectral infor-
band structures of square arrays of dielectric rods and pefagion is calculated using a discrete Fourier transform. The
fectly conducting metal rods in air as well as a square arrayeas of the spectral intensity correspond to the locations of
of air holes in d_|<_electr|c. The lattice constantaisThe Bloch eigenfrequencies. Figure(@ [1(b)] shows the band struc-
boundary conditions are tures of a square array of dielectric ro¢sr holeg with
radius 0.4@ in air (dielectrig. The g, of the dielectric is
11.7. Results for perfectly conducting metal rods are shown
in Fig. 2. Excellent agreement with results obtained by the
PWEM and MST validates the effectiveness of the LB
model.

We next describe an LB model incorporated with the
. . PML technique[16], which enables the simulation of open-
fg (x+ap,t)=e"%f, (x1), region problems. To this end, we spfi§ into fo, and fo, .

The LB evolution equation&l)—(3) now read

fl(x—a,t)y=e af (x),
f;(x_a21t):e7ik.a2f2+(xvt)a

f1(x+ay,t)=e*afi(x,t),

with a;=a(1,0), a,=a(0,1), andk the wave vector.
At interface between two different dielectrics, for the TE fi(x+Aeg t+7)—f(x,H)=0;(x,H)+ Q@ (x,1), (19
case, we replace the streami®) by
whereQ(®(x,t) is introduced to consider the absorption as-
signed to the PML mediurfil6]. Four macroscopic quanti-
(14  ties are defined

fi(xg,t+7)=—yf5(xg,t) + (1= ) f (Xa,1),

fa(Xa,t+7)=yf1 (Xa,H) +(1+ )5 (xg,1),
=mpfox+ i+ 13,
where y=(eg—ea)/(egtea), With 5 andeg the permit- Px=Tolox ™1™ Ts
tivities at x4 and xg=x,+ Ae;, respectively. Rulg14) re- 4
sembles somewhat the method of images in electrostatics to py=myfo,+ o+ 4, u=>, fve.
consider the discontinuity effect of permittivity. It can be i=1
understood as some photons go through the interface while o o o _
some are reflected by the interface. It applies to the TM cas&he equilibrium distributions(® are given by
if all & in y are replaced by.. Similar rules are adopted for
f, andf, whenx andx+ Ae, have different values of and
.

(20

!

fO=A(puct py) + - -Ugeia for i=1,234,
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FIG. 2. The photonic band structure for Tk&) and TE (b)
polarizations of a square array of perfectly conducting metal rods

FIG. 1. The photonic band structure of a square array of dielecWith radius 0.2@. The solid lines are obtained by MST while the
tric rods in air(a) and air holes in dielectri¢b), with both radii ~ ¢ircles by the LB model with 60000 time steps ame-250A
equal to 0.48. The solid(dashedllines are obtained by the PWEM (40Q) for TM (TE) case.
for TM (TE) case. The solid and open circles are corresponding

results by the LB model witla=50A and 50 000 time steps.

! !

2A 2A
f(()?():AépX— 7,Py, fg)?/):A(,)py_ 7,pxa (21)
m m

0 0

px=¢eEz, py=eE;y, u=-H
and

px= pH 2y, Py:/-Lsz, ux:Ey’ uy:_Ex:

with the coefficients (25
' 1 B’=} respectively, and requires
due,’ 2’
(22) s gm SO sm
Ve, —1 g=———=———, g=———=———_ (26)
Al=—r—, mi=2\2p,&,—1. € M € M

dpe,

By assuming(®~ €2, wheree is a small parameter of Here[o{?,o{" ,o{? ,o{™] are “pseudo” electric and mag-
the order of the Knudsen numbgt8], four macroscopic hetic conductivities assigned to absorb electromagnetic

equations result from a Chapman-Enskog expansion

dtpx T IxUx= 0Py,

waves[16]. In the simulation, they must be set small enough
to guaranted)(®~ €2,
Based on the LB PML scheme, we have studied the defect

modes in a square array of dielectric rods of refractive index

dipy+ (9yuy:5-ypyy (23 3.4 and radius 0.20 which supports a large PBG for TM

AU+ 2A" 020, p=0,U,,
where use has been madeé# 1/2 and
QP =70,f, Q@=75f" for i=13,

@ =104, OP=75,f0 for i=2,4.

case[7]. Our simulation was performed on a computation
domain(CM) containing 7 7 unit cells with lattice constant
a=40A. The CM is surrounded by a PML of thicknessAB0
with a smooth quadratic switching on of the absorpfib@].
The maximuma, and o, are 0.25¢. The defect is intro-
duced by changing the radiug of the central rod in the CM.
The simulations begin by assigning the value of the function
PEAKS to E,. The total number of time steps is 40 000.
Figure 3 shows the frequeney, of the TM defect modes for

Equations(23) coincide with the Maxwell equations for TM variousry. Figure 4 displays the electric field distributions

and TE cases in the PML mediurh6] if one sets

of defect modes whery=0.60a. The maximum of the elec-
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FIG. 3. Frequencywq of the TM defect modes in a square array
of dielectric rods with radius 0.20 obtained based on the LB PML
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model. The defect is introduced by changing the radiyof a 2-101 2 2-101.2

single rod. The shaded regions indicate the edges of the PBG. X (units of a) X (units of a)

tric field in each figure is normalized to unity in Figgaf- e

4(d). Good agreement with results obtained by the PWEM 1005 00 05 10

[7] and FDTD[12] is found. FIG. 4. Electric field distributions of the defect modes in Fig. 3

In conclusion, we have set up an LB model for PBGwhenr,=0.60a, obtained by the LB PML modela) Quadrupole,
materials. The model provides an efficient scheme for hanw,=0.298;(b) quadrupolewy=0.321;(c) second-order monopole,
dling not only periodic systems but also defects and disorwy=0.335; and(d) hexapole,wy=0.392. The frequencwy is in
dered cases. An incorporation with the PML technique yieldsinits of (27c/a).

an LB PML scheme, which may be a promising numerical

tool to simulate general electromagnetic scattering problemé].1OSt appealing is to consider the nonlinear effect. As the LB

In addition, the present scheme may open an avenue for thmethod was initially designed for nonlinear fluid systems, we

applications of the LB model. Several ways of further re_e%<pect that it can be developed into an effective numerical

o . . scheme for nonlinear electromagnetic problems as well.
search were initiated: the first one is to extend the scheme to 9 P

calculate transmission and reflection coefficients; the next The work was supported by Climbing Project and NSFC
lies in setting up an LB model for three-dimensional casethrough Grant Nos. 19704003 and 19834070.
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