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Lattice Boltzmann model for photonic band gap materials
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An efficient technique for computing photonic band structure and defect modes is proposed based on the
lattice Boltzmann model. Physically, it is a scheme based on the kinetics of the virtual microscopic process,
rather than a solution of the macroscopic Maxwell equations. The method has significant advantages of being
naturally suited for massively parallel machine, as well as speed and convenience, providing another method-
ology for photonic band gap materials and, also, for general electromagnetic scattering problems in open region
when incorporated with the perfectly matched layer technique.
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In the past decade, there has been much interest in a
cially manufactured periodic dielectric media called photo
band gap~PBG! materials, since their unique optical prope
ties enable one to manipulate and control the flow of phot
@1–5#.

Many methods have been proposed to study the phot
band structure and/or defect modes for PBG materi
Among others, the plane wave expansion method~PWEM!
@6,7#, multiple scattering theory~MST! @8#, tight-binding for-
mulation @9#, transfer matrix method@10#, and finite differ-
ence time domain~FDTD! scheme@11,12# are well estab-
lished. Most techniques are, physically, based on the solu
of macroscopic Maxwell equations and, computationally,
quire time growing at a rateNh, with h>2 andN being the
number of expansion terms or discretization points in a c
Here we set up a lattice Boltzmann~LB! model@13–15# for
PBG materials, which is based on microscopic kinetics. T
method has significant advantages of being naturally su
for massively parallel machines as well as requiring com
tation time scaling linearly withN like FDTD. When incor-
porated with perfectly matched layer~PML! technique@16#,
it may also provide an alternative numerical tool for gene
electromagnetic scattering.

The model is defined on a two-dimensional~2D! square
lattice of spacingD. At time t, each lattice sitex is associated
with five quantitiesf i(x,t), i 50,1,2,3,4, which describe th
distributions of virtual photons at sitex, time t, and moving
with velocity Dei /t. Heret is the discrete time step on th
lattice, ei5$cos@2p(i21)/4#,sin@2p(i21)/4#% for i 51,2,3,4,
are four velocity directions along the links of the lattice, a
e050.

The distribution functions evolve based on the L
Bhatnagar-Gross-Krook equation@13,17#, which is rewritten
into two procedures: relaxation,

f i
1~x,t !5 f i~x,t !1V i~x,t !, ~1!

and streaming,

f i~x1Dei ,t1t!5 f i
1~x,t !, ~2!
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where the collision termV i(x,t) takes the single relaxation
time form, with the relaxation timej,

V i~x,t !52
1

j
@ f i~x,t !2 f i

(0)~x,t !#, ~3!

and f i
(0) are local equilibrium distribution functions. Th

evolution rules~1! and~2! are particularly easy to implemen
on a massively parallel computer: the relaxation~1! can be
computed simultaneously for each lattice site and then
streaming~2! is achieved with regular, local interprocess
communications.

Three macroscopic quantities are defined by

r5(
i 50

4

mi f i , ua5(
i 51

4

mi f iveia , ~4!

wherev5D/t, the Greek subscripta denotes the space d
rections in Cartesian coordinates, andmi are weights for dif-
ferent f i . The physical symmetry suggests that fori
51,2,3,4, mi5m, which is set to unity for simplicity. The
equilibrium distributionsf i

(0) are chosen as

f i
(0)5Ar1

B

v
uaeia for i 51,2,3,4, ~5!

f 0
(0)5A0r, ~6!

where the coefficientsA,A0 ,B are independent ofr,u and
can be determined by some macroscopic constraints.
first two are local conservation ofr andu,

(
i 50

4

mi f i
(0)5r, (

i 51

4

f i
(0)veia5ua . ~7!

The macroscopic equations modeled by this virtual p
cess can be worked out by performing a Chapman-Ens
expansion on the evolution equations~1!–~3! @13–15#. To
second order, they are

] tr1]aua50, ~8!
©2003 The American Physical Society01-1
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] tua12Av2]ar50. ~9!

In deriving Eqs.~8! and~9!, we have fixedj51/2. Equations
~8! and~9! are in fact the 2D Maxwell equations for the TM
and TE cases if one sets

r5«Ez , ux52Hy , uy5Hx , ~10!

and

r5mHz , ux5Ey , uy52Ex , ~11!

respectively, and then requires

2Av25
1

m«
. ~12!

Here« andm are, respectively, permittivity and permeabili
of the material. Equations~7! and~12! serve to determine the
coefficients in Eqs.~5! and ~6! @14#

A5
1

4m r« r
, B5

1

2
,

~13!

A05
Am r« r21

2m r« r
, m052Am r« r21,

where« r5«/«0 andm r5m/m0 are relative permittivity and
permeability of the material, respectively.

Based on the LB model, we have calculated the photo
band structures of square arrays of dielectric rods and
fectly conducting metal rods in air as well as a square ar
of air holes in dielectric. The lattice constant isa. The Bloch
boundary conditions are

f 1
1~x2a1 ,t !5e2 ik•a1f 1

1~x,t !,

f 2
1~x2a2 ,t !5e2 ik•a2f 2

1~x,t !,

f 3
1~x1a1 ,t !5eik•a1f 3

1~x,t !,

f 4
1~x1a2 ,t !5eik•a2f 4

1~x,t !,

with a15a(1,0), a25a(0,1), andk the wave vector.
At interface between two different dielectrics, for the T

case, we replace the streaming~2! by

f 1~xB ,t1t!52g f 3
1~xB ,t !1~12g! f 1

1~xA ,t !,
~14!

f 3~xA ,t1t!5g f 1
1~xA ,t !1~11g! f 3

1~xB ,t !,

whereg5(«B2«A)/(«B1«A), with «A and «B the permit-
tivities at xA and xB5xA1De1, respectively. Rule~14! re-
sembles somewhat the method of images in electrostatic
consider the discontinuity effect of permittivity. It can b
understood as some photons go through the interface w
some are reflected by the interface. It applies to the TM c
if all « in g are replaced bym. Similar rules are adopted fo
f 2 and f 4 whenx andx1De2 have different values of« and
m.
02570
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When x1De1 lies inside metal whilex and all its other
nearest neighbors are inside dielectric, we set

f 3~x,t !52(
iÞ3

mi f i~x,t ! ~15!

to forceEt , the tangential component of theE field, equal to
zero for the TM case. If bothx1De1 andx1De2 lie inside
metal, we simply take

f 3~x,t !5 f 4~x,t !52
m0f 0~x,t !1 f 1~x,t !1 f 2~x,t !

2
.

~16!

For the TE case, in place of Eq.~15!, we apply

f 3~x,t !5 f 1~x,t ! ~17!

to ensureEt50 at the surface of metal. While bothx
1De1 andx1De2 are in metal,

f 3~x,t !5 f 2~x,t ! and f 4~x,t !5 f 1~x,t ! ~18!

yield a vanishingEt at metal surface for the TE mode. Sim
lar rules apply to other interface cases.

The simulations begin by assigning a function call
PEAKS in MATLAB function library to Ez (Hz) to trigger
every possible eigenmode for TM~TE! polarization. The
temporal variation of fields can then be recorded based
the evolution rules~1!–~3! and~14!–~18!. The spectral infor-
mation is calculated using a discrete Fourier transform. T
peaks of the spectral intensity correspond to the location
eigenfrequencies. Figure 1~a! @1~b!# shows the band struc
tures of a square array of dielectric rods~air holes! with
radius 0.40a in air ~dielectric!. The « r of the dielectric is
11.7. Results for perfectly conducting metal rods are sho
in Fig. 2. Excellent agreement with results obtained by
PWEM and MST validates the effectiveness of the L
model.

We next describe an LB model incorporated with t
PML technique@16#, which enables the simulation of open
region problems. To this end, we splitf 0 into f 0x and f 0y .
The LB evolution equations~1!–~3! now read

f i~x1Dei ,t1t!2 f i~x,t !5V i~x,t !1V i
(a)~x,t !, ~19!

whereV i
(a)(x,t) is introduced to consider the absorption a

signed to the PML medium@16#. Four macroscopic quanti
ties are defined

rx5m08 f 0x1 f 11 f 3 ,
~20!

ry5m08 f 0y1 f 21 f 4 , u5(
i 51

4

f ivei .

The equilibrium distributionsf i
(0) are given by

f i
(0)5A8~rx1ry!1

B8

v
uaeia for i 51,2,3,4,
1-2
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f 0x
(0)5A08rx2

2A8

m08
ry , f 0y

(0)5A08ry2
2A8

m08
rx , ~21!

with the coefficients

A85
1

4m r« r
, B85

1

2
,

~22!

A085
A2m r« r21

4m r« r
, m0852A2m r« r21.

By assumingV (a);e2, wheree is a small parameter o
the order of the Knudsen number@18#, four macroscopic
equations result from a Chapman-Enskog expansion

] trx1]xux5s̃xrx ,

] try1]yuy5s̃yry , ~23!

] tua12A8v2]ar5s̃aua ,

where use has been made ofj51/2 and

V0x
(a)5ts̃xf 0x

(0) , V i
(a)5ts̃xf i

(0) for i 51,3,

V0y
(a)5ts̃yf 0y

(0) , V i
(a)5ts̃yf i

(0) for i 52,4.

Equations~23! coincide with the Maxwell equations for TM
and TE cases in the PML medium@16# if one sets

FIG. 1. The photonic band structure of a square array of die
tric rods in air ~a! and air holes in dielectric~b!, with both radii
equal to 0.40a. The solid~dashed! lines are obtained by the PWEM
for TM ~TE! case. The solid and open circles are correspond
results by the LB model witha550D and 50 000 time steps.
02570
rx5«Ezx , ry5«Ezy , ux52Hy , uy5Hx ~24!

and

rx5mHzx , ry5mHzy , ux5Ey , uy52Ex ,
~25!

respectively, and requires

s̃x52
sx

(e)

«
52

sx
(m)

m
, s̃y52

sy
(e)

«
52

sy
(m)

m
. ~26!

Here@sx
(e) ,sx

(m) ,sy
(e) ,sy

(m)# are ‘‘pseudo’’ electric and mag
netic conductivities assigned to absorb electromagn
waves@16#. In the simulation, they must be set small enou
to guaranteeV (a);e2.

Based on the LB PML scheme, we have studied the de
modes in a square array of dielectric rods of refractive ind
3.4 and radius 0.20a, which supports a large PBG for TM
case@7#. Our simulation was performed on a computati
domain~CM! containing 737 unit cells with lattice constan
a540D. The CM is surrounded by a PML of thickness 80D
with a smooth quadratic switching on of the absorption@16#.
The maximums̃x and s̃y are 0.25/t. The defect is intro-
duced by changing the radiusr d of the central rod in the CM.
The simulations begin by assigning the value of the funct
PEAKS to Ez . The total number of time steps is 40 00
Figure 3 shows the frequencyvd of the TM defect modes for
variousr d . Figure 4 displays the electric field distribution
of defect modes whenr d50.60a. The maximum of the elec-

c-

g

FIG. 2. The photonic band structure for TM~a! and TE ~b!
polarizations of a square array of perfectly conducting metal r
with radius 0.20a. The solid lines are obtained by MST while th
circles by the LB model with 60 000 time steps anda5250D
(400D) for TM ~TE! case.
1-3
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tric field in each figure is normalized to unity in Figs. 4~a!–
4~d!. Good agreement with results obtained by the PWE
@7# and FDTD@12# is found.

In conclusion, we have set up an LB model for PB
materials. The model provides an efficient scheme for h
dling not only periodic systems but also defects and dis
dered cases. An incorporation with the PML technique yie
an LB PML scheme, which may be a promising numeri
tool to simulate general electromagnetic scattering proble
In addition, the present scheme may open an avenue fo
applications of the LB model. Several ways of further r
search were initiated: the first one is to extend the schem
calculate transmission and reflection coefficients; the n
lies in setting up an LB model for three-dimensional ca

FIG. 3. Frequencyvd of the TM defect modes in a square arra
of dielectric rods with radius 0.20a, obtained based on the LB PM
model. The defect is introduced by changing the radiusr d of a
single rod. The shaded regions indicate the edges of the PBG.
,
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most appealing is to consider the nonlinear effect. As the
method was initially designed for nonlinear fluid systems,
expect that it can be developed into an effective numer
scheme for nonlinear electromagnetic problems as well.

The work was supported by Climbing Project and NSF
through Grant Nos. 19704003 and 19834070.

FIG. 4. Electric field distributions of the defect modes in Fig.
when r d50.60a, obtained by the LB PML model.~a! Quadrupole,
vd50.298;~b! quadrupole,vd50.321;~c! second-order monopole
vd50.335; and~d! hexapole,vd50.392. The frequencyvd is in
units of (2pc/a).
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